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Abstract It has been shown in E and Li (Comm. Pure. Appl. Math., 2007, in press) that the
Andersen dynamics is uniformly ergodic. Exponential convergence to the invariant measure
is established with an error bound of the form

const · exp (−const · κ(ν)ν2N t),

where N is the number of particles, ν is the collision frequency and κ(ν) → const as ν → 0.
In this article we study the dependence on ν of the rate of convergence to equilibrium. In the
one dimension and one particle case, we improve the error bound to be

const · exp (−const · κ(ν)νt).

In the d-dimension N-particle free-streaming case, it is proved that the optimal error bound
is

const · exp

(
−const · ν

N
t

)
.

It is also shown that as ν → ∞, on the diffusive time scale, the Andersen dynamics con-
verges to a Smoluchowski equation.

1 Introduction

We are interested in the rate of convergence to equilibrium of the Andersen thermostat,
which is a commonly used algorithm in constant temperature molecular dynamics (CTMD)
[7] simulations. For molecular systems, CTMD is used to calculate the canonical ensemble
average of an observable A, i.e.,

〈A〉ens = 1

Z

∫
A(q,p)e−βH(q,p)dpdq, (1.1)
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where Z is the partition function, H(q,p) = ∑N

i=1
|pi |2
2m

+ �(q1,q2, . . . ,qN) and � is the
potential energy. The integral (1.1) is a very high dimensional integral and direct numerical
quadrature is not suitable for this problem [7]. CTMD computes (1.1) by looking for a
process X(t) = (p(t),q(t)) such that X(t) is ergodic with respect to the canonical measure.
By ergodicity one can replace 〈A〉ens by a time average over the trajectory X(t),

〈A〉ens = 〈A〉t ime = lim
T →∞

1

T

∫ T

0
A(X(t))dt,

which is more computationally affordable. In CTMD there are many methods for designing
the process X(t). Some are deterministic in nature, such as the Berendsen thermostat [3]
(also called velocity scaling), the Nosé-Hoover thermostat [9, 10, 18, 19], the Nosé-Hoover
Chains thermostat [15], the Nosé-Poincaré thermostat [2] and Recursive Multiple Thermo-
stat methods [12]. However the ergodicity of these deterministic methods is a major open
problem [4, 7, 11, 25, 26]. The situation is better with the class of “stochastically perturbed”
thermostats [4] including the Andersen thermostat [1], the Langevin thermostat [8], and the
Dissipative Particle Dynamics thermostat [17, 23]. The ergodicity of these methods can be
analyzed using standard stochastic analysis [6, 14, 16, 22, 24, 27]. We refer to [4] for a
review and comparison of some of these methods and other sampling schemes.

In [1], Andersen introduced what is now called the Andersen thermostat to pro-
duce a canonical ensemble at any given fixed finite temperature. To recapture his idea,
let us consider a d-dimensional system of N particles with inter-atomic potential � =
�(q1,q2, . . . ,qN). Throughout this paper we shall assume for simplicity that � is infinitely
differentiable although this assumption could be considerably relaxed in a number of places.
At the end of exponentially distributed time intervals, we randomly select one particle from
the system and let it collide with the heat bath. The effect of the collision is such that the cho-
sen particle “forgets” its old velocity and picks its new velocity from a Maxwell-Boltzmann
distribution defined by

g(v)dv = 1

(2π)d/2
exp

(
−|v|2

2

)
dv. (1.2)

For simplicity let us choose a unit such that the temperature and mass is normalized to 1.
Between the stochastic collisions the system still evolve according to the following Hamil-
tonian dynamics: {

q̇i = vi

v̇i = −∇qi
� i = 1, . . . ,N.

(1.3)

It is clear that such a randomized Hamiltonian dynamics has the Gibbs distribution

π(dq, dv) := 1

Z
exp

{
−

(
�(q) + |v|2

2

)}
dqdv (1.4)

as an invariant measure since it is preserved by both the Hamiltonian dynamics and the
stochastic collisions. A fundamental question is whether the Gibbs distribution is the only
invariant distribution and if so what is the rate of convergence to equilibrium. In [6] we rig-
orously formulated the Andersen dynamics and showed that it is uniformly ergodic. More
precisely, denote by P t

x the Markov transition semigroup of the N -particle Andersen dy-
namics, we have

‖P t
x − π‖T V ≤ const · exp (−const · κ(ν) · ν2N t),
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where ν is the collision frequency, 0 < κ(ν) < ∞ and κ(ν) → const as ν → 0. Although
such an error bound is quite satisfactory, we want to point out that it is not clear whether
that the ν2N -dependence in the exponent is sharp. Such a question is of importance since
in molecular dynamics simulations one would like to know what criteria should be used to
find an optimal collision frequency ν to achieve fast convergence to equilibrium. It is the
purpose of this paper to give a partial answer to this question. In the one-dimensional one
particle(with potential) case, we shall show that

‖P t
x − π‖T V ≤ const · exp (−const · κ(ν) · νt).

In the d-dimensional N -particle free streaming case (the potential � = const), we give a
complete answer to this question. By Fourier methods we established a bound of the follow-
ing form:

‖P t
x − π‖T V ≤ const · exp

(
−const · ν

N
t

)

where N is the number of particles. We also study the limit of the Andersen dynamics as
ν → ∞. We show that on the diffusive time scale, the Andersen dynamics converges to a
Smoluchowski equation.

This paper is organized as follows. In Sects. 2 and 3 we recall the definition of continuous
time and discrete time Andersen dynamics and give some elementary facts. In Sect. 4 we
give the proof of exponential convergence to equilibrium in the one dimensional one particle
continuous time case. A regularity result is also proved there. Similar results are proved for
the discrete time case in Sect. 5. We establish more refined results for the free-streaming
case in Sect. 6. In Sect. 7 we prove the diffusive limit of the Andersen dynamics. Some
concluding remarks are given in Sect. 8.

2 Continuous Time Andersen Dynamics

Let us recall [6] the definition of d-dimensional N -particle Andersen dynamics. Let D =
R

dN/Z
dN be the torus in R

dN . We shall take D to be the configuration space and define � =
D ⊗ R

dN as the phase space. For convenience let us first define the Andersen substitution
operator.

Definition 2.1 (Andersen Substitution Operator) Let i be an integer between 1 and N .
Let u ∈ R

d and x = (q1, . . . ,qN,v1, . . . ,vN) ∈ �. Then the Andersen substitution opera-
tor S(i,u) : R

dN → R
dN is defined as:

S(i,u)x := (q1, . . . ,qN,v1, . . . ,vi−1,u,vi+1, . . . ,vN).

With these notations, the continuous time d-dimensional N -particle Andersen dynamics
is defined as a Markov process on �.

Definition 2.2 (Continuous Time Andersen Process) Suppose on a probability space
(�,F,P), {Tn}∞

1 are i.i.d. random variables which are exponentially distributed with mean
1/ν (ν > 0); {Yn}∞

1 are i.i.d. random variables such that P (Yn = j) = 1/N for any integer j

between 1 and N ; {Zn}∞
1 are i.i.d. random variables in R

d which obey a common Maxwell-
Boltzmann distribution (1.2). Let Nt denote the Poisson counting process generated by {Tn},
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then the continuous time Andersen dynamics starting at a point x ∈ � is defined as:
{

Xt := H(t − ∑Nt

n=1 Tn)[∏Nt

n=1 S(Yn,Zn)H(Tn)]x, t > 0,

X0 = x,
(2.1)

where H(·) is the Hamiltonian flow operator associated with (1.3) and Xt is related to the
starting point x by applying successively a cascade of operators. Here for a sequence of
operators An,

∏N

1 An is defined as the backward product, i.e.

N∏
n=1

An = ANAN−1 · · ·A1.

It is immediately obvious that the Andersen process has right-continuous sample trajec-
tories and therefore its invariant distribution can be found by computing the infinitesimal
generator associated with the process. To write down an explicit form of the infinitesimal
generator, we first introduce the notion of Andersen collision operator:

Definition 2.3 Let q = (q1,q2, . . . ,qN), v = (v1,v2, . . . ,vN),x = (q,v) and let g(·) be the
probability density function of the aforementioned Maxwell-Boltzmann distribution (1.2),
then the Andersen collision operator A is defined as:

(Af )(x) := 1

N

N∑
i=1

Aif := 1

N

N∑
i=1

g(vi )

∫
Rd

f (S(i,u)x)du. (2.2)

The adjoint A∗ of the Andersen collision operator is given by

(A∗f )(x) := 1

N

N∑
i=1

∫
Rd

f (S(i,u)x)g(u)du.

The infinitesimal generator G of the Andersen process can be computed and is given by:

G := ν(A∗ − I) + iL

where I is the identity operator and the Liouville operator iL is defined as:

(iLf )(q,v) := v · ∇qf − ∇q� · ∇vf.

Let us recall the following definition of invariant measure.

Definition 2.4 (Definition of Invariant Measure) Suppose (X,B) is a measurable space and
T : X → X is a measurable transformation. A measure μ is said to be an invariant (proba-
bility) measure for T if μ(B) = μ(T −1B) for any B ∈ B.

Suppose μ is an invariant measure of the Andersen process, then it has to satisfy:

G∗μ = 0

or in more explicit form:

[ν(A− I) − iL]μ = 0.
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It is not hard to verify that the Gibbs distribution (1.4) is a solution to the above equation.
So immediately we have the following theorem:

Theorem 2.5 The Gibbs distribution

π(dq, dv) := 1

Z
exp

{
−

(
�(q) + |v|2

2

)}
dqdv

is an invariant measure of the continuous time Andersen dynamics (2.2).

3 Discrete Time Andersen Dynamics

The discrete time formulation of the Andersen process is given by the following random
dynamical system:

Definition 3.1 Let {αn}∞
n=1 be i.i.d. random variables such that P(αn = 1) = λ = ν�t and

P(αn = 0) = 1−λ = 1− ν�t , retaining the same notion of Yn and Zn as before, the discrete
Andersen dynamics is defined as:

xn+1 = (1 − αn)H(�t)xn + αnS(Yn,Zn)H(�t)xn. (3.1)

It is straightforward to write down the evolution equation for the probability measures μ.
Indeed, we have

μn+1 = (1 − λ)H(−�t)μn + λAH(−�t)μn. (3.2)

To see how this is connected to the continuous case, let us note that any invariant measure
μ has to satisfy:

μ = (1 − λ)H(−�t)μ + λAH(−�t)μ

this is equivalent to: (
I − e−iL�t

�t

)
μ = ν(A− I)e−iL�tμ.

Now formally we can recover the continuous equation by letting �t go to 0.
The following notation will be used in a number of places.

Definition 3.2 For q ∈ R
dN , denote by {q} the canonical projection of q into D, i.e.

q ≡ {q}mod Z
dN , where {q} ∈ D.

Similarly we define [q] := q − {q} ∈ Z
dN .

Denote by M the set of Borel probability measures on �. To quantify the distance be-
tween probability measures, we introduce the following definition.

Definition 3.3 (Total Variational Norm) Let μ be a finite signed measure on (�,B(�)), the
total variational norm [13] of μ is defined by:

‖μ‖T V := sup
A∈B(�)

|μ(A)|.
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If μ1,μ2 ∈ M are absolutely continuous with respect to the Lebesgue measure on �, then
we have,

‖μ1 − μ2‖T V = 1

2

∫
�

|ρ1(x) − ρ2(x)|dx

where ρ1 = dμ1
dx and ρ2 = dμ2

dx are the densities.

4 Proof of Exponential Convergence to Equilibrium: One-dimensional One-particle
Case

Denote by P t
x′ the transition semigroup of the continuous time Andersen dynamics, then P t

x′
can be viewed as a mild solution to the following Duhamel equation:

P t
x′ = e−νtH−tP 0

x′ + ν

∫ t

0
eν(s−t)H−(t−s)AP s

x′ds.

We now state our main theorem.

Theorem 4.1 (Main Theorem) There exists a constant ν0 > 0 such that for any 0 < ν < ν0

and for any x ′ ∈ �, t > 0, we have

‖P t
x′ − π‖T V ≤ c exp(−κνt)

where c is an absolute constant and κ is a constant depending possibly on �.

Before we give the proof of main theorem, we shall explain our strategy of proof. In [6]
our method for proving convergence to equilibrium is to prove a Doeblin condition for P t

x′
when t is sufficiently small. More precisely, there exists t∗ > 0, a probability measure μt∗
and a constant 0 < c < 1, such that

P t∗
x′ ≥ cν2μt∗ for any x ′ ∈ �.

This condition will imply the bound

‖P t
x′ − π‖T V ≤ const · exp (−const · ν2t).

To improve the bound to exp (−const · νt), let us observe that P t
x′ has the following expan-

sion:

P t
x′ = e−νtH−tP 0

x′ + ν

∫ t

0
eν(s−t)H−(t−s)AP s

x′ds

= e−νtH−t δx′ + νe−νt

∫ t

0
H−(t−s)AH−sδx′ds

+ ν2e−νt

∫ t

0

∫ s

0
H−(t−s)AH−(s−τ)AH−τ δx′dτds + · · · . (4.1)

To get some insight it is helpful to analyze each term in the expansion more carefully. Con-
sider for example the measure

H−(t−s)AH−(s−τ)AH−τ δx′ .
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The essence of our method in [6] is to show that for s − τ small,

H−(t−s)AH−(s−τ)AH−τ δx′ = ε(s − τ)μ + (1 − ε(s − τ))μx′

where 0 < ε(s − τ) < 1 is some constant and the measure μ is independent of x ′. It is then
natural to ask what happens if s − τ is large. It turns out that for all s − τ ≥ t∗, we have

H−(t−s)AH−(s−τ)AH−τ δx′ = ε(t∗)μ + (1 − ε(t∗))μx′ .

A more precise statement of this result is given in Lemma 4.4 below. The intuitive interpre-
tation of this result is that the spreading effect of the operator AH−tA in configuration space
cannot become worse with time! Analogously it is natural to expect that the n-th (n ≥ 3) term
in the expansion (4.1) can be decomposed into a x ′-dependent and x ′-independent part. One
can then estimate the total variational norm of all the x ′-dependent parts and prove that it
converges exponentially fast to zero with an error bound of the form const ·exp (−const · νt).
Let us point out that such an idea is very much like a coupling idea in that one tries to rewrite
the semigroup P t

x′ into parts which are x ′-independent and x ′-dependent. Such a rewriting
can be done in an iterative fashion and one can then estimate how fast the x ′-dependent part
decreases with time.

Let us begin by introducing some notations. In the one-dimensional one-particle case,
for any u ∈ R and q̃ ∈ D = [0,1), let us denote by ϕt

uq̃ the position of the particle at time
t by evolving according to equation (1.3) with initial position q̃ and initial velocity u. Our
goal is to show that

AH−tAδx′ ≥ ε(t∗)μ ∀t ≥ t∗.

In the one-dimensional one-particle case, it is enough for us to show

∫
δ({q − ϕt

uq̃})G(u)du ≥ ε(t∗)μunif

where μunif is the uniform probability measure on D. To illustrate the difficulties, let us
observe

∫
δ({q − ϕt

uq̃})G(u)du =
∑
k∈Z

∫
δ(q + k − ϕt

uq̃)G(u)du

=
∑
k∈Z

G(u)

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣
−1

u: ϕt
uq̃=q+k

.

For u satisfying ϕt
uq̃ = q + k, we have

q + k = ϕt
uq̃ = q̃ + ut −

∫ t

0

∫ s

0
�′(ϕτ

u q̃)dτds.

So that u ≈ O(k
t
) for k and t large. On the other hand, a simple Gronwall estimate of | ∂ϕt

uq̃

∂u
|

suggests that ∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣ ≤ const · exp(const · t).
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These two estimates gives us

∫
δ({q − ϕt

uq̃})G(u)du =
∑
k∈Z

G(u)

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣
−1

u: ϕt
uq̃=q+k

≥
∑
k∈Z

G

(
const · k

t

)
const · exp(−const · t).

It is obvious such a lower bound will go to zero as t approaches infinity. To resolve the above

difficulty, we shall do a cut-off in the velocity space and get a better estimate of | ∂ϕt
uq̃

∂u
|. As

we will see later, it is helpful to introduce the following notion of “crossing time”.

Lemma 4.2 (Crossing Time Estimate) Let q̃ ∈ D be arbitrary but fixed. Let ε < 1 be a fixed
positive constant. Let A > 0 be sufficiently large such that for any u > A, we have

(1 − ε)u ≤ v(ϕt
uq̃) ≤ (1 + ε)u ∀t ≥ 0.

Then the (q̃, u)-crossing time is defined as

t q̃u := inf{t > 0 : ϕt
uq̃ = q̃ + 1}

we have that t
q̃
u satisfies the following list of properties:

(1) 1
(1+ε)u

≤ t
q̃
u ≤ 1

(1−ε)u

(2) For any integer 0 ≤ j ≤ t

t
q̃
u

,

ϕt
uq̃ = ϕt−j t

q̃
u

u q̃ + j

(3) There exist positive constants c1, c2, depending only on the potential �, such that

∣∣∣∣∂t
q̃
u

∂u

∣∣∣∣ ≤ c1

(1 − ε)u
exp

(
c2

(1 − ε)u

)
.

Proof Let A := 2‖�‖∞+1
ε

. By energy conservation, we have

�(q̃) + u2

2
= �(ϕt

uq̃) + v(ϕt
uq̃)2

2
.

It is immediate that for u > A, we have

(1 − ε)u ≤ v(ϕt
uq̃) ≤ (1 + ε)u ∀t ≥ 0.

Clearly ∀t ≥ 0, we have

q̃ + (1 − ε)ut ≤ ϕt
uq̃ ≤ q̃ + (1 + ε)ut.

From this it is easy to see that t
q̃
u exists and satisfies

1

(1 + ε)u
≤ t q̃u ≤ 1

(1 − ε)u
.
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The second property of t
q̃
u is obvious by its definition. Let us now prove the differentiability

of t
q̃
u as a function of u. By definition of t

q̃
u we have

ϕt
q̃
u

u q̃ = q̃ + 1

differentiating with respect to u on both sides gives us,

∂ϕτ
u q̃

∂u

∣∣∣∣
τ=t

q̃
u

+ v(ϕt
q̃
u

u q̃)
∂t

q̃
u

∂u
= 0.

One immediately sees that

∂t
q̃
u

∂u
= − 1

v(ϕ
t
q̃
u

u q̃)

∂ϕτ
u q̃

∂u

∣∣∣∣
τ=t

q̃
u

.

To estimate | ∂t
q̃
u

∂u
|, let us observe that a simple Gronwall estimate gives us

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣ ≤ c1 exp(c2t), ∀t ≥ 0

where c1,c2 are some constants depending only on the potential �. We then have

∣∣∣∣∂t
q̃
u

∂u

∣∣∣∣ ≤ 1

v(ϕ
t
q̃
u

u q̃)

∣∣∣∣∂ϕτ
u q̃

∂u

∣∣∣∣
τ=t

q̃
u

≤ 1

(1 − ε)u
· c1 exp(c2|t q̃u |)

≤ c1

(1 − ε)u
exp

(
c2

(1 − ε)u

)

proving the lemma. �

The next lemma establishes a form of solvability which be needed later.

Lemma 4.3 (Existence of Solutions) Let t∗ > 0 be arbitrary but fixed. Let A := 2‖�‖∞+1
ε

,
where ε < 1 is a positive number. Let β1 = (1 + ε)A + 1

t∗ and β2 > β1. Then for any integer
k satisfying β1t ≤ k ≤ β2t , the equation in u

ϕt
uq̃ = q + k

has a solution u = uk which satisfies

A ≤ uk ≤ 1

(1 − ε)t∗
+ β2

1 − ε
. (4.2)

Furthermore there exists a constant c(ε,�, t∗, β2) such that for u = uk , we have
∣∣∣∣∂ϕt

uq̃

∂u

∣∣∣∣ ≤ c(ε,�, t∗, β2)t. (4.3)
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Proof From energy conservation, we have if u ≥ A, then the following simple inequality
holds

(1 − ε)u ≤ v(ϕt
uq̃) ≤ (1 + ε)u, ∀t > 0. (4.4)

Immediately we have for u ≥ A,

q̃ + (1 − ε)ut ≤ ϕt
uq̃ ≤ q̃ + (1 + ε)ut.

With this inequality the existence of solution is proved by an easy application of the inter-
mediate value theorem. The estimate of u = uk (4.2) is obvious. The estimation (4.3) is not
trivial. Let us begin by introducing “crossing time” defined for any u ≥ A:

t q̃u := inf{t > 0 : ϕt
uq̃ = q̃ + 1}.

Let j be an nonnegative integer whose value to be chosen later, then by Lemma 4.2 we have,

ϕt
uq̃ = ϕt−j t

q̃
u

u q̃ + j.

Taking derivative with respect to u on both sides and we get

∂ϕt
uq̃

∂u
= ∂ϕτ

u q̃

∂u

∣∣∣∣
τ=t−j t

q̃
u

+ j · ∂t
q̃
u

∂u
· v(ϕt−j t

q̃
u

u q̃).

A simple Gronwall estimate on the first term of the right hand side of the above equality
gives us:

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣ ≤ c1 · exp(c2|t − j t q̃u |) + j · (1 + ε)u

∣∣∣∣∂t
q̃
u

∂u

∣∣∣∣
where c1 = c1(�) and c2 = c2(�) are positive constants. Choosing j = [t/t

q̃
u ] gives us

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣ ≤ c1 exp(c2t
q̃
u ) + (1 + ε)

t |u|
t
q̃
u

·
∣∣∣∣∂t

q̃
u

∂u

∣∣∣∣.

Now it is clear that we only need to estimate t
q̃
u and | ∂t

q̃
u

∂u
|. By Lemma 4.2 we have

1
1+ε

(1−ε)t∗ + β2(1+ε)

1−ε

≤ 1

(1 + ε)u
≤ |t q̃u | ≤ 1

(1 − ε)u
≤ 1

(1 − ε)A

and ∣∣∣∣∂t
q̃
u

∂u

∣∣∣∣ ≤ c3

(1 − ε)u
exp

(
c4

(1 − ε)u

)
≤ c3

(1 − ε)A
exp

(
c4

(1 − ε)A

)
.

The lemma then follows easily. �

Now we are ready to prove our main lemma.

Lemma 4.4 (Long Time Spreading in Configuration Space) Let μuni be the uniform proba-
bility measure on D. Then for any t∗ > 0, there exists a constant ε(t∗,�) such that ∀t ≥ t∗
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and ∀q̃ ∈ D, we have ∫
δ({q − φt

uq̃})G(u)du ≥ ε(t∗,�)μuni.

Proof Using the same notations as in the previous lemma, we have∫
δ({q − ϕt

uq̃})G(u)du

≥
∫

u≥A

δ({q − ϕt
uq̃})G(u)du

≥
∑

β1t≤k≤β2t

G(u)

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣
−1

u:ϕt
uq̃=q+k and u≥A

≥ (β2 − β1)t · G
(

1

(1 − ε)t∗
+ β2

1 − ε

)
· 1

c(ε,�, t∗, β2)t

≥ ε(t∗,�)μuni. �

Lemma 4.5 (Short Time Spreading in Configuration Space) For any 0 < t <
1

1+3‖�′′‖∞+‖�′‖∞ and ∀q̃ ∈ D, we have

∫
δ({q − ϕt

uq̃})G(u)du ≥ 2

3t
G

(
3

t

)
μuni.

Proof Let us start from

∫
δ({q − ϕt

uq̃})G(u)du =
∑

k

G(u)

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣
−1

u: ϕt
uq̃=q+k

≥ G(u)

∣∣∣∣∂ϕt
uq̃

∂u

∣∣∣∣
−1

u:ϕt
uq̃=q+1

.

It remains to show the existence of solution to the equation in u:

ϕt
uq̃ = q + 1

and estimate the corresponding u and | ∂ϕt
uq̃

∂u
|. This is easy if one makes use of the following

equality:

ϕt
uq̃ = q̃ + ut −

∫ t

0

∫ s

0
�′(ϕτ

u q̃)dτds.

We omit the details. �

Combining previous two lemmas, we obtain the following

Corollary 4.6 (All Time Spreading in Configuration Space) Let μuni be the uniform proba-
bility measure on D. Then ∀t > 0 and ∀q̃ ∈ D, we have∫

δ({q − ϕt
uq̃})G(u)du ≥ ε(t)μuni
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where

ε(t) =
{

ε0, if t > t∗,
2
3t

G( 3
t
), 0 < t ≤ t∗,

and t∗, ε0 are constants depending only on the potential �.

The next corollary is a generalized version of the previous one and will be needed in the
proof of our main theorem.

Corollary 4.7 Let t1, . . . , tn be an arbitrary sequence of positive numbers with n ≥ 1. Let
s ≥ 0 be arbitrary but fixed. Then there exists a probability measure μt1,...,tn on D such that
for any x ′ ∈ �, we have

AH−tnAH−tn−1 · · ·AH−t1AH−sδx′

=
[

1 −
n∏

j=1

(1 − ε(tj ))

]
μt1,...,tn ⊗ G(v)dv +

[
n∏

j=1

(1 − ε(tj ))

]
μx′

t1,...,tn
⊗ G(v)dv

where μx′
t1,...,tn

is a probability measure on D which may depend on x ′.

Proof We use induction. Consider first n = 1. Let μuni be the uniform probability measure
on D, then by previous lemma, we have

∫
dvH−t1AH−sδx′ ≥ ε(t1)μt1

with μt1 = μuni. If we define

μx′
t1

:=
∫

dvH−t1AH−sδx′ − ε(t1)μt1

1 − ε(t1)
.

Then clearly we have

AH−t1AH−sδx′ = ε(t1)μt1 ⊗ G(v)dv + (1 − ε(t1))μ
x′
t1

⊗ G(v)dv.

Assume now for k ≥ 2 and n < k the claim is true. Then for n = k, by using the induction
hypothesis, we have

AHtkAHtk−1 · · ·AHt1AHsδx′

=
[

1 −
k−1∏
j=1

(1 − ε(tj ))

]
AHtk (μt1,...,tk−1 ⊗ G(v)dv)

+
[

k−1∏
j=1

(1 − ε(tj ))

]
AHtk (μx′

t1,...,tk−1
⊗ G(v)dv).

By using Corollary 4.6, we have

AHtk (μx′
t1,...,tk−1

⊗ G(v)dv) =
∫

D

μx′
t1,...,tk−1

(dq̃)AHtk (δq̃ ⊗ G(v)dv)
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≥
∫

D

μx′
t1,...,tk−1

(dq̃)ε(tk)μ
uni ⊗ G(v)

= ε(tk)μ
uni ⊗ G(v).

Clearly then

μt1,...,tk ⊗ G(v)dv ·
(

1 −
k∏

j=1

(1 − ε(tj ))

)

=
[

1 −
k−1∏
j=1

(1 − ε(tj ))

]
AHtk (μt1,...,tk−1 ⊗ G(v)dv)

+ ε(tk)

[
1 −

k−1∏
j=1

(1 − ε(tj ))

]
μuni ⊗ G(v)dv.

The corollary is proved. �

We are now ready to prove our main theorem.

Proof of Theorem 4.1 We begin by observing the following expansion of P t
x′ :

P t
x′ = e−νtH−tP 0

x′ + ν

∫ t

0
eν(s−t)H−(t−s)AP s

x′ds

= e−νtH−t δx′ + νe−νt

∫ t

0
H−(t−s)AH−sδx′ds +

∑
n≥2

νne−νtρ
(n)

x′ ,

where for n ≥ 2,

ρ
(n)

x′ :=
∫ t

0

∫ t0

0
· · ·

∫ tn−2

0
H−(t−t0)AH−(t0−t1)A · · ·

×H−(tn−2−tn−1)AH−tn−1δx′dtn−1dtn−2 · · ·dt0.

Clearly ∀x ′, y ′ ∈ D, we have

‖P t
x′ − P t

y′ ‖T V ≤ 2(1 + νt)e−νt +
∑
n≥2

νne−νt‖ρ(n)

x′ − ρ
(n)

y′ ‖T V .

By Corollary 4.7, we have

‖ρ(n)

x′ − ρ
(n)

y′ ‖T V ≤ 2
∫ t

0

∫ t0

0
· · ·

∫ tn−2

0

n−2∏
j=0

(1 − ε(tj − tj+1))dtn−1dtn−2 · · ·dt0.

So that

‖P t
x′ − P t

y′ ‖T V

≤ 2(1 + νt)e−νt
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+ 2e−νt
∑
n≥2

νn

∫ t

0

∫ t0

0
· · ·

∫ tn−2

0

n−2∏
j=0

(1 − ε(tj − tj+1))dtn−1dtn−2 · · ·dt0

≤ 2

1 − ε0
α(ν, t)e−νt

where α(ν, t) satisfies:

α(ν, t) = 1 + ν

∫ t

0
(1 − ε(t − s))α(ν, s)ds.

By Corollary 4.6 and a simple Gronwall argument, we obtain for 0 < ν < 1
t∗ :

α(ν, t) ≤ 1

1 − νt∗
exp

(
1 − ε0

1 − νt∗
νt

)
.

Now let us take ν0 = min{ ε0
2t∗ , 1

2t∗ }. Then for any 0 < ν < ν0, we have

‖P t
x′ − P t

y′ ‖T V ≤ 2

(1 − ε0)(1 − νt∗)
exp

(
−ε0 − νt∗

1 − νt∗
νt

)

≤ 4

1 − ε0
exp

(
−ε0

2
νt

)
.

Now recall that ε0 can be chosen < 1
2 and the theorem follows easily. �

A reexamination of Corollary 4.7 suggests that we can obtain the following regularity
result for the transition semigroup P t

x′ .

Theorem 4.8 (Exponential Decomposition of the Transition Semigroup) For any x ′ ∈ �

and any t > 0, there exists a constant κ > 0 which depends possibly on the potential � such
that the Markov semigroup P t

x′ admits the following decomposition:

P t
x′ = (1 − 4e−κνt )μabs

t + 4e−κνt · μx′

where μabs
t is a probability measure on � which is absolutely continuous with respect to the

Lebesgue measure on �, and μx′ is some probability measure which may possibly depend
on x ′.

Proof We start by observing that in Corollary 4.7 the measure which are x ′-dependent is
actually absolutely continuous with respect to the Lebesgue measure. It follows easily that
in the expansion of P t

x′ , the total variational norm of the x ′-dependent part is at most

(1 + νt) exp (−νt)

+ e−νt
∑
n≥2

νn

∫ t

0

∫ t0

0
· · ·

∫ tn−2

0

n−2∏
j=0

(1 − ε(tj − tj+1))dtn−1dtn−2 · · ·dt0

≤ 1

1 − ε0
α(ν, t)e−νt
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where α(ν, t) satisfies:

α(ν, t) = 1 + ν

∫ t

0
(1 − ε(t − s))α(ν, s)ds.

The proof is finished by the same estimate of α(ν, t) at the end of the proof of Theo-
rem 4.1. �

Remark 4.9 Let us point out that such an exponential decomposition is the best one can hope
for in the sense that P t

x′ will always contain a singular part which is exponentially decaying
in time. To see this, consider the one-dimensional one-particle free-streaming case. Suppose
the initial distribution is of the form:

ρ|t=0 = μuni ⊗ δv′

where μuni is the uniform probability measure in the configuration space and δv′ is the Dirac
distribution at v′ ∈ R. Then it is obvious that the time evolution equation for ρ is given by

∂tρ = ν(A− I )ρ.

The solution to this equation is given by

ρt = μuni ⊗ (e−νt δv′ + (1 − e−νt )G(v)dv)

= e−νtμuni ⊗ δv′ + (1 − e−νt )μuni ⊗ G(v)dv

one sees immediately that ρt and therefor P t
x′ will always contain a singular part which is

exponentially decaying in time.

5 Exponential Convergence to Equilibrium: Discrete Time Case

In this section we will establish analogous results for the discrete time one-dimensional
one-particle Andersen dynamics. For any integer n ≥ 1, let us denote by (P �t

x′ )n the n-step
transition probability of the discrete Andersen dynamics. We have the following theorem:

Theorem 5.1 There exist constants ν0 = ν0(�) > 0 and �t0 = �t0(�) such that for any
0 < ν < ν0, 0 < �t < �t0 and any x ′ ∈ �, we have

‖(P �t
x′ )n − π‖T V ≤ c exp (−κnν�t) ∀n ≥ 1

where c is an absolute constant and κ depends only on �.

Proof By (3.2) we have

(P �t
x′ )n = [(1 − ν�t)H−�t + ν�tAH−�t ]nδx′

=
n∑

k=0

(1 − ν�t)n−k(ν�t)k
∑

∑k
j=0 rj =n−k

rj ≥0,0≤j≤k

H−r0�tAH−(r1+1)�t · · ·AH−(rk+1)�t δx′ .
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By Corollary 4.7, the total variational norm of x ′-dependent parts in the above sum is at
most

n∑
k=0

(1 − ν�t)n−k(ν�t)k
∑

∑k
j=0 rj =n−k

rj ≥0,0≤j≤k

k−1∏
i=1

(1 − ε((ri + 1)�t))

≤ (1 − ν�t)n

1 − ε0
a(n, ν,�t)

where a(n, ν,�t) satisfies

a(n, ν,�t) = 1 + ν�t

1 − ν�t

n∑
j=1

(1 − ε(j�t))a(n − j, ν,�t).

By Lemma 4.4, we have

a(n, ν,�t)

≤ 1 + ν�t

1 − ν�t

( ∑
i: i�t≤t∗

(1 − ε(i�t))a(n − i, ν,�t)

+
∑

i: i�t>t∗
(1 − ε(i�t))a(n − i, ν,�t)

)

≤ 1 + ν�t

1 − ν�t

∑
i: i�t≤t∗

a(n − i, ν,�t) + (1 − ε0)ν�t

1 − ν�t

n∑
i=1

a(n − i, ν,�t).

Now observe that a(n, ν,�t) as a function of n is non-decreasing so that,

(1 − ν�t − νt∗)a(n, ν,�t) ≤ 1 + (1 − ε0)ν�t

n∑
i=1

a(n − i, ν,�t).

Now a simple Gronwall estimate gives

a(n, ν,�t) ≤
(

1 + (1 − ε0)ν�t

1 − ν(�t + t∗)

)n

.

Clearly it follows that the x ′-dependent part in (P �t
x′ )n is at most

(1 − ν�t)n

1 − ε0

(
1 + (1 − ε0)ν�t

1 − ν(�t + t∗)

)n

≤ 1

1 − ε0
exp

(
−ε0 − ν(�t + t∗)

1 − ν(�t + t∗)
nν�t

)
.

It follows easily that ∀x ′, y ′ ∈ �, we have

‖(P �t
x′ )n − (P �t

x′ )n‖T V ≤ c exp (−κnν�t) ∀n ≥ 1

where c is an absolute constant and κ depends only on �. �

The following corollary is obvious
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Corollary 5.2 (Exponential Decomposition of the Transition Semigroup) For any x ′ ∈ �

and any t > 0, there exists a constant κ > 0 which depends possibly on the potential � such
that (P �t

x′ )n admits the following decomposition:

(P �t
x′ )n = (1 − 2e−κνt )μabs

n + 2e−κνt · μx′

where μabs
n is a probability measure on � which is absolutely continuous with respect to the

Lebesgue measure on �, and μx′ is some probability measure which may possibly depend
on x ′.

6 Free Streaming Case: A Better Bound

If the inter-atomic potential is switched off, then we can obtain a better bound by using
Fourier methods. Again let us start with the Duhamel expansion of P t

x′ as follows:

P t
x′ = e−νtH−tP 0

x′ + ν

∫ t

0
eν(s−t)H−(t−s)AP s

x′ds

= e−νtH−t δx′ + νe−νt

∫ t

0
H−(t−s)AH−sδx′ds

+ ν2e−νt

∫ t

0

∫ s

0
H−(t−s)AH−(s−τ)AH−τ δx′dτds +

∑
n≥3

νne−νtρ(n)

where for n ≥ 3,

ρ(n) :=
∫ t

0

∫ t0

0
· · ·

∫ tn−2

0
H−(t−t0)AH−(t0−t1)A · · ·

×H−(tn−2−tn−1)AH−tn−1δx′dtn−1dtn−2 · · ·dt0.

Lemma 6.1 We have for n ≥ 3

∥∥∥∥ρ(n) − tn

n!G(v)

∥∥∥∥
T V

≤
∑
k �=0

t ·
(

1

2
√

2π |k|
)n−1

.

Proof Let’s write

ρ(n) =
∫ t

0

∫ t0

0
· · ·

∫ tn−2

0
H−(t−t0)AH−(t0−t1)A · · ·H−(tn−2−tn−1)AH−tn−1δx′dtn−1dtn−2 · · ·dt0

= G(v)

∫
Rn−1

du1du2 · · ·dun−1G(u1)G(u2) · · ·G(un−1)

×
∫ t

0

∫ t0

0
· · ·

∫ tn−2

0
dtn−1dtn−2 · · ·dt0

× δ({q − q ′ − v(t − t0) − u1(t0 − t1) − u2(t1 − t2) − · · ·
− un−1(tn−2 − tn−1) − v′tn−1})

= tn

n!G(v) + G(v)

∫ t

0

∫ t0

0
· · ·

∫ tn−2

0
dtn−1dtn−2 · · ·dt0
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×
∑
k �=0

exp{2πιk(q − q ′ − v(t − t0) − v′tn−1)} exp

{
−2(πk)2

n−2∑
j=0

(tj − tj+1)
2

}

where the last equality follows from Fourier transformation. Then we have

∥∥∥∥ρ(n) − tn

n!G(v)

∥∥∥∥
T V

≤
∑
k �=0

∫ t

0

∫ t0

0
· · ·

∫ tn−2

0
dtn−1dtn−2 · · ·dt0 exp

{
−2(πk)2

n−2∑
j=0

(tj − tj+1)
2

}

≤
∑
k �=0

t ·
(

1

2
√

2π |k|
)n−1

the above series in k obviously converges since n ≥ 3. �

Theorem 6.2 In the 1D free streaming case, we have ∀0 < ν < 2
√

2π and ∀x ′ ∈ �,

‖P t
x′ − π‖T V ≤

{
2

(
1 + νt + ν2t2

2

)
+ πν3t

24(1 − ν

2
√

2π
)

}
e−νt .

Proof Let us note that in the free streaming case, we have π(dqdv) = dq ⊗ G(v)dv. Now
∀0 < ν < 2

√
(2π), by the previous lemma and the expansion of P t

x′ preceding the lemma,
we have

‖P t
x′ − π‖T V ≤ 2

(
1 + νt + (νt)2

2

)
e−νt + e−νt

∑
n≥3

νn

∥∥∥∥ρ(n) − tn

n!G(v)

∥∥∥∥
T V

≤ 2

(
1 + νt + (νt)2

2

)
e−νt + te−νt

∑
k �=0

∑
n≥3

νn

(2
√

2π |k|)n−1

≤
{

2

(
1 + νt + (νt)2

2

)
+ πν3t

24(1 − ν

2
√

2π
)

}
e−νt .

�

It is possible to generalize to dimension d ≥ 1, indeed, we have the following theorem:

Theorem 6.3 In the d-dimensional free streaming case, we have ∀0 < ν < 2
√

2π and
∀x′ ∈ �,

‖P t
x′ − π‖T V ≤

{
2

(
1 + νt + ν2t2

2
+ · · · + (νt)d+1

(d + 1)!
)

+ tνd+2

1 − ν

2
√

2π

· 1

2
d+1

2
√

π�(d
2 )

}
e−νt

where �(·) is the usual Gamma function.

Proof By using a d-dimensional version of Lemma 6.1, we have

‖P t
x′ − π‖T V



J Stat Phys (2007) 129: 265–287 283

≤ 2e−νt

(
1 + νt + ν2t2

2
+ · · · + (νt)d+1

(d + 1)!
)

+ te−νt ·
∑

0 �=k∈Zd

∑
n≥d+2

νn

(2
√

2π |k|)n−1

≤
{

2

(
1 + νt + ν2t2

2
+ · · · + (νt)d+1

(d + 1)!
)

+ tνd+2

1 − ν

2
√

2π

· 1

(2
√

2π)d+1
·

∑
0 �=k∈Zd

1

|k|d+1

}
e−νt .

The proof is finished by an application of the elementary inequality:

∑
0 �=k∈Zd

1

|k|d+1
≤ 2d+1π

d
2

�(d
2 )

.

�

Let us further generalize the above theorem to the N -particle, d-dimensional free stream-
ing case. Since there is no interaction amongst particles, the following lemma is obvious.

Lemma 6.4 (Propagation of Molecular Chaos) For the N -particle, d-dimensional free
streaming case, suppose

P 0
x′ =

N∏
j=1

δ({qj − q′
j })δ(vj − v′

j )

then we have ∀t > 0

P t
x′ =

N∏
j=1

P (j)

(
t

N
,qj ,vj ;q′

j ,v′
j

)

where P (j) is the Markov transition semigroup for j -th particle.

Proof It suffices to note that

G = 1

N

N∑
j=1

Gj

where Gj = ν(Aj − Id) − vj · ∇j and Gj are commutable. �

The following theorem is immediate:

Theorem 6.5 In the N -particle, d-dimensional free streaming case, we have ∀0 < ν <

2
√

2π and ∀x′ ∈ �,

‖P t
x′ − π‖T V ≤

{
2Nh(t) + tνd+2

1 − ν

2
√

2π

· 1

2
d+1

2
√

π�(d
2 )

}
e− νt

N

where

h(t) := 1 + νt

N
+ 1

2

(
νt

N

)
+ · · · + 1

(d + 1)!
(

νt

N

)d+1

and �(·) is the usual Gamma function.



284 J Stat Phys (2007) 129: 265–287

Proof Use Lemma 6.4 and Theorem 6.3. �

7 Proof of Convergence to the Smoluchowski Equation

Throughout this section we shall assume the number of particles N = 1. The analysis done
for N = 1 is enough to explain the problem of choosing large ν. Let us begin by noting that
the perturbation analysis developed in [20] is directly applicable to our problem. Although
it is very common to apply the analysis there to the backward Kolmogorov equation, here
we find it more convenient to work directly with the forward Kolmogorov equation. To fix
the notations, let us introduce the Banach space M of finite signed Borel measures on �

endowed with the total variational norm. The Andersen collision operator A (2.2) has a
natural extension on M , i.e. for any μ ∈ M , and any Borel sets A ⊂ D, B ⊂ R

d , we have

(Aμ)(A ⊗ B) = μ(A ⊗ R
d)

∫
B

G(v)dv.

It is clear that A is a projection operator on M . For any smooth real-valued function f on
the configuration space D, the Smoluchowski operator is defined by:

Bf = ∇ · (f ∇�) + �f.

Let M1 be the Banach space of finite signed Borel measures on the configuration space D.
The Smoluchowski operator B generates a strongly continuous contraction semigroup on
M1 which is denoted by S1(t). Let N = AM be the range of the Andersen collision operator
A in M . Obviously if μ ∈ N then μ(dq ⊗ dv) = μ1(dq) ⊗ G(v)dv, where μ1 ∈ M1 is the
marginal measure of μ on D. We can then extend S1(t) to a strongly continuous contraction
semigroup S(t) on N . S(t) is defined by

(S(t)μ)(dq ⊗ dv) := (S1(t)μ1)(dq) ⊗ G(v)dv,

where μ ∈ N and μ1 is the marginal of μ on D. For convenience we shall also define S(t)μ1

for any μ1 ∈ M1 by the same relation above. We have the following simple proposition.

Proposition 7.1 Let μ ∈ N be such that the marginal measure μ1 on the configuration
space D has an infinitely differentiable density with respect to the Lebesgue measure on D.
Then for any T > 0, there exists a positive constant Cμ,�,T depending only on (μ,�,T ),
such that

sup
0≤t≤T

‖(iL)kρj (t)‖T V ≤ Cμ,�,T ∀k = 1,2,3 and j = 1,2

where ρ1(t) = S(t)(Bμ1) and ρ2(t) = S(t)μ.

Proof Observe that the Smoluchowski operator is an elliptic operator so that S1(t)μ1 is
infinitely differentiable in both (t,q). The proof is obvious. �

Consider the rescaled Andersen infinitesimal generator (for measures):

G∗
ν := ν2(A− I) − νiL. (7.1)

Denote by Tν(t) the continuous contraction semigroup on M generated by G∗
ν . We shall

prove the following theorem.
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Theorem 7.2 (Convergence to the Smoluchowski Equation on the Diffusive Time Scale)
Let μ ∈ N be such that the marginal measure μ1 on the configuration space D has an
infinitely differentiable density with respect to the Lebesgue measure on D. Then for any
0 < T < ∞, there exists a positive constant Cμ,�,T depending only on (μ,�,T ), such that

sup
0≤t≤T

‖Tν(t)μ − S(t)μ‖T V ≤ Cμ,�,T

ν
∀ν ≥ 1.

Proof Let uν(t) = Tν(t)μ, v(t) = S(t)μ, following [20] we have

(
d

dt
− Gν

)(
uν(t) − v(t) + 1

ν
iLv(t) − 1

ν2
(iL)2v(t)

)

=
(

d

dt
− ν2(A− I) + νiL

)(
−v(t) + 1

ν
iLv(t) − 1

ν2
(iL)2v(t)

)

= 1

ν
(−(iL)3v(t) + iLρ1(t)) − 1

ν2
((iL)2ρ1(t))

where ρ1(t) = S(t)(Bμ1). By Proposition 7.1, it is immediate that the right hand side of
the above equation is bounded by a constant independent of ν. Using the smoothness of
solutions, we have for any T < ∞, and ν ≥ 1,

sup
0≤t≤T

∥∥∥∥uν(t) − v(t) + 1

ν
iLv(t) − 1

ν2
(iL)2v(t)

∥∥∥∥ ≤ C1

ν

where C1 is some positive constant depending only on (μ,�,T ). Now use Proposition 7.1
again and the proof is finished. �

Remark 7.3 The picture of the Andersen dynamics on the diffusive time scale is now in-
tuitively obvious. In the ν � 1 limit, the velocity distribution is stationary and Gaussian,
and the particle’s motion is governed by an elliptic diffusion in the configuration space. It
is well known that for the Smoluchowski equation the convergence to equilibrium is ex-
ponentially fast. Due to the scaling in (7.1), it is not hard to see that the convergence to
equilibrium is “slowed down” as we increase ν in the ν � 1 limit, since the “true” time for
the Smoluchowski equation is given by t

ν
.

The following easy corollary shows that on the advective time scale, the Andersen dy-
namics may not converge at all.

Corollary 7.4 (Non-convergence to the True Equilibrium on the Advective Time Scale) Let
μ ∈ N be such that the marginal measure μ1 on the configuration space D has an infinitely
differentiable density with respect to the Lebesgue measure on D. Let T 0

ν (t) := Tν(
t
ν
) be the

strongly continuous contraction semigroup generated by the unscaled Andersen infinitesimal
generator. Then for any 0 < T < ∞, we have

lim
ν→∞ sup

0≤t≤T

‖T 0
ν (t)μ − μ‖T V = 0.

Proof This is obvious using the fact that S(t) is strongly continuous. �
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8 Concluding Remarks

To understand better the role of the collision frequency, it is instructive to compare the An-
dersen thermostat to the well known hybrid Monte Carlo methods (HMC) introduced by
Duane et al. [5]. The HMC method samples the so called configurational canonical measure
which is obtained from the canonical measure by integrating out the momentum variables. In
HMC at integer time steps one also generates fictitious momentum kicks, but only to make
moves in the configuration space. There are several differences between HMC and Ander-
sen. In terms of calculating the ensemble average, it is clear that the HMC method is more
efficient since in the Andersen thermostat the momentum variables are always kept. How-
ever the Andersen thermostat can be used to calculate the transport properties of the system
in the low collision frequency limit [6], whereas HMC cannot be used for this purpose. We
also want to add that in HMC the role of ν is played by 1/�t where �t is the integration
time step since the rejection rate depends on the choice of �t . In a sense the problem we
are addressing here also appears in HMC for which the choice of �t is a delicate problem
[4, 21]. However for the Andersen thermostat, due to the perhaps spurious desire to preserve
the real dynamics, the rate of convergence to equilibrium is more subtle. As we have shown
here, for the 1-d one particle and n-d ideal gas case, the true time scale coincides with the
intuitive time scale which is N/ν.
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